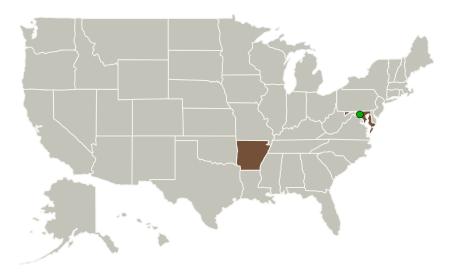
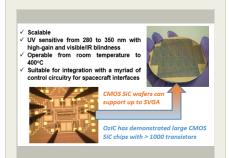
Highly Scalable SiC UV Imager for Earth & Planetary Science, Phase I



Completed Technology Project (2015 - 2015)


Project Introduction

Commercial silicon carbide (SiC)-based photonic sensors typically use p-i-n photodiode and reversed-biased Avalanche Photodiode (APD) detectors. These state-of-the-art SiC photodioides use the wafer substrate as one node of the device, thereby making monolithic integration of the device with control or analysis circuitry difficult, if not impossible. Ozark IC's new (patent pending) photo detecting devices are inherently suitable for integration in SiC-based low-voltage integrated circuit processes. By virtue of their construction, the photo-generation occurs efficiently and with very high gain. This proposal uses these high-gain photonic devices to construct the world's first monolithic SiC UV pixel sensor array. Also key to this proposal is Ozark IC's extensive library of SiC analog and mixed-signal IP and its expertise in extreme environment IC design.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ozark Integrated Circuits, Inc.	Lead Organization	Industry	Fayetteville, Arkansas
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Highly Scalable SiC UV Imager for Earth & Planetary Science, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

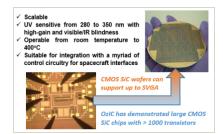
Highly Scalable SiC UV Imager for Earth & Planetary Science, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations		
Arkansas	Maryland	

Project Transitions

June 2015: Project Start


December 2015: Closed out

Closeout Summary: Highly Scalable SiC UV Imager for Earth & Planetary Scien ce, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138955)

Images

Briefing Chart Image

Highly Scalable SiC UV Imager for Earth & Planetary Science, Phase I (https://techport.nasa.gov/imag e/134508)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Ozark Integrated Circuits, Inc.

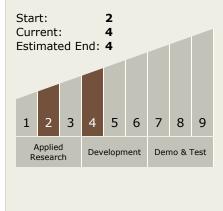
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Anthony M Francis

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Highly Scalable SiC UV Imager for Earth & Planetary Science, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

